Principal Networks
نویسندگان
چکیده
Graph representations of brain connectivity have attracted a lot of recent interest, but existing methods for dividing such graphs into connected subnetworks have a number of limitations in the context of neuroimaging. This is an important problem because most cognitive functions would be expected to involve some but not all brain regions. In this paper we outline a simple approach for decomposing graphs, which may be based on any measure of interregional association, into coherent "principal networks". The technique is based on an eigendecomposition of the association matrix, and is closely related to principal components analysis. We demonstrate the technique using cortical thickness and diffusion tractography data, showing that the subnetworks which emerge are stable, meaningful and reproducible. Graph-theoretic measures of network cost and efficiency may be calculated separately for each principal network. Unlike some other approaches, all available connectivity information is taken into account, and vertices may appear in none or several of the subnetworks. Subject-by-subject "scores" for each principal network may also be obtained, under certain circumstances, and related to demographic or cognitive variables of interest.
منابع مشابه
Outlier Detection in Wireless Sensor Networks Using Distributed Principal Component Analysis
Detecting anomalies is an important challenge for intrusion detection and fault diagnosis in wireless sensor networks (WSNs). To address the problem of outlier detection in wireless sensor networks, in this paper we present a PCA-based centralized approach and a DPCA-based distributed energy-efficient approach for detecting outliers in sensed data in a WSN. The outliers in sensed data can be ca...
متن کاملDynamic anomaly detection by using incremental approximate PCA in AODV-based MANETs
Mobile Ad-hoc Networks (MANETs) by contrast of other networks have more vulnerability because of having nature properties such as dynamic topology and no infrastructure. Therefore, a considerable challenge for these networks, is a method expansion that to be able to specify anomalies with high accuracy at network dynamic topology alternation. In this paper, two methods proposed for dynamic anom...
متن کاملUse of Artificial Neural Networks and PCA to Predict Results of Infertility Treatment in the ICSI Method
Background: Intracytoplasmic sperm injection (ICSI) or microinjection is one of the most commonly used assisted reproductive technologies (ART) in the treatment of patients with infertility problems. At each stage of this treatment cycle, many dependent and independent variables may affect the results, according to which, estimating the accuracy of fertility rate for physicians will be difficul...
متن کاملDesigning a trust-based recommender system in Social Rating Networks
One of the most common styles of business today is electronic business, since it is considered as a principal mean for financial transactions among advanced countries. In view of the fact that due to the evolution of human knowledge and the increase of expectations following that, traditional marketing in electronic business cannot meet current generation’s needs, in order to survive, organizat...
متن کاملستفاده از خوشهبندیهای پیاپی نقشه خودسازمانده برای بهبود پیشبینی پیک بار الکتریکی روزانه مبتنی بر شبکههای عصبی پیشخوراند
متن کامل
Detection of Fake Accounts in Social Networks Based on One Class Classification
Detection of fake accounts on social networks is a challenging process. The previous methods in identification of fake accounts have not considered the strength of the users’ communications, hence reducing their efficiency. In this work, we are going to present a detection method based on the users’ similarities considering the network communications of the users. In the first step, similarity ...
متن کامل